If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2+100=5(8P^2-20P)+1
We move all terms to the left:
2+100-(5(8P^2-20P)+1)=0
We add all the numbers together, and all the variables
-(5(8P^2-20P)+1)+102=0
We calculate terms in parentheses: -(5(8P^2-20P)+1), so:We get rid of parentheses
5(8P^2-20P)+1
We multiply parentheses
40P^2-100P+1
Back to the equation:
-(40P^2-100P+1)
-40P^2+100P-1+102=0
We add all the numbers together, and all the variables
-40P^2+100P+101=0
a = -40; b = 100; c = +101;
Δ = b2-4ac
Δ = 1002-4·(-40)·101
Δ = 26160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{26160}=\sqrt{16*1635}=\sqrt{16}*\sqrt{1635}=4\sqrt{1635}$$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-4\sqrt{1635}}{2*-40}=\frac{-100-4\sqrt{1635}}{-80} $$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+4\sqrt{1635}}{2*-40}=\frac{-100+4\sqrt{1635}}{-80} $
| 40(x+8/10)=40(4/5+x-4/8) | | -18=3/2y | | 7x+4+3x-6=90 | | 3x^2–14x+15=0 | | 3(6y+1)-20=5(2y+1)+25 | | 3x2–14x+15=0 | | -8v(v+2)+4v+5=6v+10 | | -18=(3/2)y | | 4x=9x-72=180 | | -33=-2h+4h | | 12x-12=-12(x+1) | | 8m+43-9(m-3)=9m-(7m-7)-4m+3 | | (12/5)=-6x | | 3k^2+19k+28=0 | | -6x+8x-8=2(x-5)-3 | | X+18y=162 | | (5n+1)=5 | | 6(x+2)=x+3 | | -6p-6(6-2p)=2(p-5)-6 | | x+1,15x=2 | | -5v/8=-10 | | 5x=15=65 | | -2+19w=11w+23 | | 2y+18=5(y+6) | | 6x-5-4x+9=20 | | 9(9-a)+15=33 | | 5(x+6)-2x=3(x+10 | | 4(3x-1)=9x-12 | | -9(w-6)=5w-16 | | 6=y/4-1 | | 20x(X-40)=Y | | 10(a-1)=-6a+7+16a |